
HIGH PERFORMANCE COMPUTER ARCHITECTURE 23-06-2005 MATRICULATION NO.__________________

(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME____________________

REVISED 26-10-2023 FIRST NAME____________________

 (POINTS 14/40) Consider the following

snippet of code running on a processor that
uses the Tomasulo's algorithm to perform the
dynamic scheduling of instructions. The
program performs the operation Y=aX/Y on a
vector of 100 elements. Initially, R1 = 0 and
F0 contains the value of the constant ‘a’.

etic: L.D F2, 0(R1) ; read Xi
 MUL.D F4, F2, F0 ; multiply a*Xi
 L.D F6, 400(R1) ; load Yi
 DIV.D F6, F4, F6 ; a*Xi/Yi
 S.D F6, 400(R1) ; store Yi
 ADDI R1, R1, 8 ; update R1
 SGTI R3, R1, 800 ; R1 >? 800, result in R3
 BEQ R3, R0, etic; continue to loop if

false

C
om

m
on

 D
ata B

us

(I-cache
Access) (Decode)

Regs

WRITE-BACK

Address
Effective

D-Cache 1 D-Cache 2

(DISPATCH) (ISSUE+EXECUTE)

AL RS

(Complete)

2 RSFD
3 RSFM
3 RSFA
2 RSLS
2 RSAL
2 RSB
5 ELEMLQ
5 ELEMSQ

F D P WI+X

LS FU

1

B RS

B FU

+

INTEGER
ADDER

+

1
AL FU

INTEGER
ADDER

+

LQ

SQ

1

M RS

FA FU

FLOATING POINT
ADDER

. + .

1
FM FU

FLOATING POINT
MULTIPLIER

. * .

FA RS

FM RS

1
FD FU

FLOATING POINT
DIVIDER

. / .

FD RS

Working hypothesis:
• the pipeline implements a single-dispatch policy
• the instructions after a branch are executed speculatively and predicted ‘taken’
• high-performance fetch breaks after fetching a branch
• the issue stage (I) calculates the address of the actual reads and writes
• reads require 1 clock cycle; writes require 1 clock cycles
• when accessing memory (M), writes have precedence over reads and must be executed in-order
• there is a single CDB
• dispatch stage (D) and complete stage (C) require 1 clock cycle
• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition
• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
• the load buffer has 5 slots
• the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)
• the rest of the processor and has the following characteristics

Type of Functional Unit No. of Functional Units Cycles for stage I+X No. of reservation stations
Integer (effective addr.) 1 1 2
Integer (op. A-L) 1 1 2
Integer (branch calc.) 1 1 2
FP Adder 1 4 3
FP Multiplier 1 8 3
FP Divider 1 15 2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.
Iter. Instruction P disPatch

(start-stop)
I+X Issue
(start-stop)

M MEM
ACCESS
(clock)

W CDB-Write
(Complete)
(clock)

C Commit
(clock)

Comments

1 L.D F2,0(R1) 1-4 2 3 4 5
… …
… …

 (POINTS 10/40) For the same fragment of code of exercise 1, let’s assume a single-pipeline processor such that the branch condition is solved in

the decode stage, so that we have only 1 cycle for the delay slot. Moreover, let’s assume that:
 The dispatch and complete stage requires 1 cycle
 There are the following latencies between operations:
Producer Instruction Consumer Instruction Latency (clock cycles)
FP operation FP operation 4
FP operation Store double 2
Load double FP operation 2
Load double Store double 1

The pipeline is single-dispatch: calculate the execution time (in cycles) of a single loop and show where there are stalls with and without
static scheduling of the instructions (without unrolling techniques).

 (POINTS 8/40) Explain the operation and draw a diagram of a PAg branch 2-level predictor with a 12-bit BSHR and size 212 x 2 bit for the PHT.

 (POINTS 8/40) Given the sequence P1: R, P2: R, P3: R, P1: W, P2: W, P3: W (Px:R = read by the processor Px, Px:W write by the processor

Px), with respect to a certain variable 'a ', show for each processor the sequence of states, and transactions on the bus that occur in a
multiprocessor UMA with write-back caches for each processor and DRAGON coherence protocol.

