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1) (POINTS 13/40) Consider the following snippet of code running on a dual-dispatch processor using Tomasulo's algorithm to perform the 
dynamic scheduling of instructions. The program performs the operation Y=aX/Y on a vector of 100 elements. Initially, R1 = 0 and F0 

contains the value of the constant ‘a’. 
 

lab: L.D F2, 0(R1) ; read Xi 

 MUL.D F4, F2, F0 ; multiply a*Xi 

   L.D F6, 400(R1) ; load Yi 

   DIV.D F6, F4, F6 ; a*Xi/Yi 

   S.D F6, 400(R1) ; store Yi 

   ADDI R1, R1, 8 ; update R1 

   SGTI R3, R1, 800 ; R1 >=? 800, result in R3 

   BEQ R3, R0, lab ; continue to loop if false 
 

 Working hypothesis: 

• speculative execution is permitted and branches are predicted taken; high-performance fetch breaks after a branch 

• the issue stage (I) calculates the address of the actual reads and writes; 
• reads require 1 clock cycle; writes take 0 cycles (they are written in a write-buffer + split-cache) 

• when accessing memory (M), writes have precedence over reads and must be executed in-order 

• there's only one CDB 
• dispatch stage (P) and complete stage (W) require 1 clock cycle 

• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the 

branch condition 
• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, 

except for Stores) 

• the load queue has 5 slots; the store queue has 5 slots (writes wait for the operand in the queue buffer, i.e., in the execution stage) 
• the rest of the processor and has the following characteristics 

Type of Functional Unit No. of Functional Units Cycles for stage I No. of  reservation stations 

Integer (effective addr.) 1 1 2 

Integer (op. A-L) 1 1 2 

Integer (branch calc.) 1 1 2 
FP Adder 1 4 3 

FP Multiplier 1 8 3 

FP Divider 1 15 2 
 

Complete the following chart until the end of the third iteration of the code fragment above. 
 

Iter. Instruction P: Dispatch 

(start-stop) 

I+X: 

Issue+Exec 

(start-stop) 

M: MEM 

ACCESS 

(clock) 

W: CDB-write 

(Complete) 

(clock) 

C: Commit 

(clock) 

Comments 

1 L.D   F2,0(R1) 1-4 2-2 3 4 5  

1 MUL.D F4,F2,F0 1-13 5-12  13 14  

1 L.D F6,400(R1)       
 

2) (POINTS 17/40) The test-and-set method is the simplest synchronization mechanism and it is available in the large majority of 

commercial shared-memory machines. Such mechanism is based on the atomic exchange operation EXCH that consists in 

loading the old value at a given address and store into the same address a new value. The “lock” mechanism is in turn 

implemented upon such atomic operation by spinning on a specific memory address until the lock is open (the returned value is 

a zero, meaning “unlocked”, instead of a one meaning “locked”). The following code represent a possible implementation: 

 

LOCK CODE: 
    tas: ADDI R2, R0, 1 

    lockit: EXCH R2, 0(R1) 

  BNE  R2, R0, lockit 

 

UNLOCK CODE: 
    unlock: SW    R0,0(R1) 

 

Let’s consider a situation in which three 

processors (P0, P1, P15) that try to lock the 

address 0x100 in a machine having 16 

processors. Assume an MSI coherence protocol 

and the cache contents represented in figure. 

The bus-transaction costs are: 

• Creadblk            =100 

• Ccache-to-cache=70 

• Cinvalidate        =15 

• Cwrite-back       =10. 

For the sake of simplicity, assume also that the 

critical sections last 1000 cycles. 

 

Assuming that the processors acquire the lock in the order P0→ P1→P15 and given the initial situation of caches and 

memory represented in the above figure, , calculate: a) how many bus transactions are there; b) how many memory stall 

cycles for each of the processors are necessary before acquiring the lock. 
 

3) (POINTS 10/40) Calculate the PARALLELISM, by using 

WORK e SPAN, for the following Cilk implementation of the 

recursive Fibonacci code in case of n=5. 

int fib(int n) 

{ 

   if (n < 2) return; 

   int x, y; 

   x = cilk_spawn fib(n-1); 

   y = fib(n-2); 

   cilk_sync; 
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   return x+y; 

} 

EXERCIZE 1: 

 
Iter. Instruction P: Dispatch 

(start-stop) 

I+X: 

Issue+Exec 

(start-stop) 

M: MEM 

ACCESS 

(clock) 

W: CDB-write 

(Complete) 

(clock) 

C: Commit 

(clock) 

Comments 

1 L.D   F2,0(R1) 1-4 2-2 3 4 5  

1 MUL.D F4,F2,F0 1-13 5-12  13 14 I waits F2 from 1/L.D 

1 L.D   F6,400(R1) 2-5 3-3 4 5 15  

1 DIV.D F6,F4,F6 2-29 14-28  29 30 I waits F4 from 1/MUL.D  

1 S.D   F6,400(R1) 5-6 6-6 30  31 P waits LS-RS,M waits F6 from 1/DIV.D 

1 ADDI  R1,R1,8 5-7 6-6  7 32  

1 SGTI  R3,R1,800 6-9 8-8  9 33 I waits R1 from 1/ADDI 

1 BEQ   R3,R0,etic 6-10 10-10   34 I waits R3 from 1/SGTI 

2 L.D   F2,0(R1) 7-10 8-8 9 10 35  

2 MUL.D F4,F2,F0 7-21 13-20  21 36 I waits F2 from 2/L.D & MUL-FU avail. 

2 L.D   F6,400(R1) 8-11 9-9 10 11 37  

2 DIV.D F6,F4,F6 8-44 29-43  44 45 I waits F4 from 1/MUL.D 

& DIV-FU avail. 

2 S.D   F6,400(R1) 11-12 12-12 45  46 P waits LS-RS,M waits F6 from 2/DIV.D 

2 ADDI  R1,R1,8 11-14 12-12  14 47 CDB waits bus avail. 

2 SGTI  R3,R1,800 12-17 15-15  16 48 I waits R1 from 2/ADDI  

  

 

2 BEQ   R3,R0,etic 12-17 17-17   49 I waits R3 from 2/SGTI  

3 L.D   F2,0(R1) 13-17 15-15 16 17 50 CDB waits bus avail.  

3 MUL.D F4,F2,F0 13-30 21-28           
 

30 51 
I waits F2 from 2/L.D & MUL-FU avail. 

CDB waits bus avail.  

3 L.D   F6,400(R1) 14-18 16-16 17 18 52 LS-FU avail. 

3 DIV.D F6,F4,F6 30-59 44-58  59 60 P waits DIV-RS available, 

I waits DIV-FU avail. 

3 S.D   F6,400(R1) 30-30 31-31 60  61 M waits F6 from 3/DIV.D 

3 ADDI  R1,R1,8 31-33 32-32  33 62  

3 SGTI  R3,R1,800 31-35 34-34  35 63 I waits R1 from 3/ADDI 

3 BEQ   R3,R0,etic 32-36 36-36   64 I waits R3 from 3/SGTI 

 

 
 


