
HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010 MATRICULATION NO.__________________

(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME____________________

REVISED 23-10-2023 FIRST NAME____________________

1) (POINTS 13/40) Consider the following snippet of code running on a dual-dispatch processor using Tomasulo's algorithm to perform the
dynamic scheduling of instructions. The program performs the operation Y=aX/Y on a vector of 100 elements. Initially, R1 = 0 and F0

contains the value of the constant ‘a’.

lab: L.D F2, 0(R1) ; read Xi

 MUL.D F4, F2, F0 ; multiply a*Xi

 L.D F6, 400(R1) ; load Yi

 DIV.D F6, F4, F6 ; a*Xi/Yi

 S.D F6, 400(R1) ; store Yi

 ADDI R1, R1, 8 ; update R1

 SGTI R3, R1, 800 ; R1 >=? 800, result in R3

 BEQ R3, R0, lab ; continue to loop if false

 Working hypothesis:

• speculative execution is permitted and branches are predicted taken; high-performance fetch breaks after a branch

• the issue stage (I) calculates the address of the actual reads and writes;
• reads require 1 clock cycle; writes take 0 cycles (they are written in a write-buffer + split-cache)

• when accessing memory (M), writes have precedence over reads and must be executed in-order

• there's only one CDB
• dispatch stage (P) and complete stage (W) require 1 clock cycle

• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the

branch condition
• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write,

except for Stores)

• the load queue has 5 slots; the store queue has 5 slots (writes wait for the operand in the queue buffer, i.e., in the execution stage)
• the rest of the processor and has the following characteristics

Type of Functional Unit No. of Functional Units Cycles for stage I No. of reservation stations

Integer (effective addr.) 1 1 2

Integer (op. A-L) 1 1 2

Integer (branch calc.) 1 1 2
FP Adder 1 4 3

FP Multiplier 1 8 3

FP Divider 1 15 2

Complete the following chart until the end of the third iteration of the code fragment above.

Iter. Instruction P: Dispatch

(start-stop)

I+X:

Issue+Exec

(start-stop)

M: MEM

ACCESS

(clock)

W: CDB-write

(Complete)

(clock)

C: Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2-2 3 4 5

1 MUL.D F4,F2,F0 1-13 5-12 13 14

1 L.D F6,400(R1)

2) (POINTS 17/40) The test-and-set method is the simplest synchronization mechanism and it is available in the large majority of

commercial shared-memory machines. Such mechanism is based on the atomic exchange operation EXCH that consists in

loading the old value at a given address and store into the same address a new value. The “lock” mechanism is in turn

implemented upon such atomic operation by spinning on a specific memory address until the lock is open (the returned value is

a zero, meaning “unlocked”, instead of a one meaning “locked”). The following code represent a possible implementation:

LOCK CODE:
 tas: ADDI R2, R0, 1

 lockit: EXCH R2, 0(R1)

 BNE R2, R0, lockit

UNLOCK CODE:
 unlock: SW R0,0(R1)

Let’s consider a situation in which three

processors (P0, P1, P15) that try to lock the

address 0x100 in a machine having 16

processors. Assume an MSI coherence protocol

and the cache contents represented in figure.

The bus-transaction costs are:

• Creadblk =100

• Ccache-to-cache=70

• Cinvalidate =15

• Cwrite-back =10.

For the sake of simplicity, assume also that the

critical sections last 1000 cycles.

Assuming that the processors acquire the lock in the order P0→ P1→P15 and given the initial situation of caches and

memory represented in the above figure, , calculate: a) how many bus transactions are there; b) how many memory stall

cycles for each of the processors are necessary before acquiring the lock.

3) (POINTS 10/40) Calculate the PARALLELISM, by using

WORK e SPAN, for the following Cilk implementation of the

recursive Fibonacci code in case of n=5.

int fib(int n)

{

 if (n < 2) return;

 int x, y;

 x = cilk_spawn fib(n-1);

 y = fib(n-2);

 cilk_sync;

HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010

SOLUTION REVISED 23-10-2023
 return x+y;

}

EXERCIZE 1:

Iter. Instruction P: Dispatch

(start-stop)

I+X:

Issue+Exec

(start-stop)

M: MEM

ACCESS

(clock)

W: CDB-write

(Complete)

(clock)

C: Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2-2 3 4 5

1 MUL.D F4,F2,F0 1-13 5-12 13 14 I waits F2 from 1/L.D

1 L.D F6,400(R1) 2-5 3-3 4 5 15

1 DIV.D F6,F4,F6 2-29 14-28 29 30 I waits F4 from 1/MUL.D

1 S.D F6,400(R1) 5-6 6-6 30 31 P waits LS-RS,M waits F6 from 1/DIV.D

1 ADDI R1,R1,8 5-7 6-6 7 32

1 SGTI R3,R1,800 6-9 8-8 9 33 I waits R1 from 1/ADDI

1 BEQ R3,R0,etic 6-10 10-10 34 I waits R3 from 1/SGTI

2 L.D F2,0(R1) 7-10 8-8 9 10 35

2 MUL.D F4,F2,F0 7-21 13-20 21 36 I waits F2 from 2/L.D & MUL-FU avail.

2 L.D F6,400(R1) 8-11 9-9 10 11 37

2 DIV.D F6,F4,F6 8-44 29-43 44 45 I waits F4 from 1/MUL.D

& DIV-FU avail.

2 S.D F6,400(R1) 11-12 12-12 45 46 P waits LS-RS,M waits F6 from 2/DIV.D

2 ADDI R1,R1,8 11-14 12-12 14 47 CDB waits bus avail.

2 SGTI R3,R1,800 12-17 15-15 16 48 I waits R1 from 2/ADDI

2 BEQ R3,R0,etic 12-17 17-17 49 I waits R3 from 2/SGTI

3 L.D F2,0(R1) 13-17 15-15 16 17 50 CDB waits bus avail.

3 MUL.D F4,F2,F0 13-30 21-28

30 51
I waits F2 from 2/L.D & MUL-FU avail.

CDB waits bus avail.

3 L.D F6,400(R1) 14-18 16-16 17 18 52 LS-FU avail.

3 DIV.D F6,F4,F6 30-59 44-58 59 60 P waits DIV-RS available,

I waits DIV-FU avail.

3 S.D F6,400(R1) 30-30 31-31 60 61 M waits F6 from 3/DIV.D

3 ADDI R1,R1,8 31-33 32-32 33 62

3 SGTI R3,R1,800 31-35 34-34 35 63 I waits R1 from 3/ADDI

3 BEQ R3,R0,etic 32-36 36-36 64 I waits R3 from 3/SGTI

