1) $(13 / 40)$ Let us consider a 2-level-Pap branch-predictor: the Branch History Shift Register (BSHR) has 2 elements $(\mathrm{m}=1)$ of 12 bits each $(\mathrm{k}=12)$ and we have 2 Pattern History Tables (PHT), i.e., $\mathrm{p}=1$.
The predictor uses a finite-state machine represented by a 2-bit saturation-counter $(\mathrm{j}=2)$.
The Branch Target Buffer (BTB) has 4 elements.
Draw the complete scheme of the predictor and highlight the connections with the rest of a standard 5-stages pipeline (e.g., MIPS).
Represent the content of BHSR, PHT, BTB for the following branch sequence (hexadecimal addresses)
BIA \rightarrow BTA (Branch Instruction Address \rightarrow Branch Target Address): $1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000$, $1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000,1040 \rightarrow 1000,1080 \rightarrow 1000$, $1040 \rightarrow 1000,1080 \rightarrow 1000$.
2) $(14 / 40)$ Write a CUDA program (explain at best the possibilities of parallelization offered by such programming model) to parallelize the dot-product of two vectors of size $10^{\prime} 000$ integers.
3) $(13 / 40)$ In a quad-core (4 cores) shared-memory multiprocessor the coherence protocol is MESI. Each core has a private direct-access cache ($\mathrm{A}=$ Associativity $=1$), the block size is 64 bytes and the total capacity of the cache is 256 bytes. Write the final state of each copy of a given block in each of the 4 caches for the following list of accesses to the cache (notation: core \rightarrow hexadecimal_address(R for read or W for write)):
$0 \rightarrow 0 \times 1000(R), 1 \rightarrow 0 \times 1000(R), 1 \rightarrow 0 \times 1000(\mathrm{~W}), 2 \rightarrow 0 \times 1000(\mathrm{R}), 3 \rightarrow 0 \times 1000(\mathrm{R}), 0 \rightarrow 0 \times 1000(\mathrm{~W})$.
