\qquad
\qquad

1) $(34 / 40)$ Consider the following fragment of code which is executing on a VLIW processor. Initially $\mathrm{R} 1=600$, $\mathrm{R} 2=0 \times 1000, \mathrm{R} 3=0 \times 3000$:

lab:	LW	R4, 0 (R2)	
	LW	R5, 0 (R3)	
	ADD	R4, R4, R4	
	ADD	R4, R4, R5	
	MUL	R4, R4	; R4=R4*R4
	SW	R4, 0 (R2)	
	SW	R4, 0 (R3)	
	ADDI	R2, R2, 4	
	ADDI	R3, R3, 4	
	SUBI	R1, R1, 1	
	BNE	R1, R0, lab	

Working hypothesis:

- Fetch and decode stage have a 6 -instruction width
- There are three functional units for the Arithmetic-Logic operations and Branches (ALBUs)
- Branches have 1 delay slot
- There are two Load/Store Units with three stages (effective address calculation, addressing, eventual read); the eventual read requires 1 clock cycle
- Write-backs can be overlapped to the decode stage
- There is one Multiplication Unit (MU) with four stages
- The register file has 24 registers R0-R23 (R0 is hardwired to the value 'zero')
- The register file has 6 independent input ports and 6 independent output ports
- The compiler unrolls the iterations in order to use all available registers (the number of iterations is known by the compiler - initially written in R1)

By compiling the following tables, calculate:
i) the CIT (Cycles per Iteration) of the optimally unrolled loop so that the CIT is minimized;
ii) the IPC (Instructions Per Cycle) at the end of the iterations
iii) the Utilization factor $\mathrm{U}=$ available_slots/total_slots

Ciclo	ALBU1	ALBU2	ALBU3	LSU1	LSU2	MULU		
$\mathbf{1}$	\ldots	\ldots	\ldots	LW	R4,0(R2)	LW	R5,0 (R3)	NOP
$\mathbf{2}$	\ldots							
3	\ldots							

2) $(6 / 40)$ On a Linux system, write the SINGLE command line to perform at the BASH shell prompt the following operation (please note that no intermediate files should be used:

- The file 'data1.txt' contains an unsorted list of numerical values to be used as input
- The file 'data2.txt' should contain a sorted list of the values contained in data1.txt
- The sorted list should also be parsed to extract the lines which contain a " 1 "
- The extracted list should be directed to the printer

