
HIGH PERFORMANCE COMPUTER ARCHITECTURE midterm exam 31-10-2017 MATR.NO.__________________

(REVISED 23/10/2023)

 SURNAME__________________

 FIRST NAME__________________

1) (POINTS 35/40) Consider the following snippet of code running on a triple-dispatch (3 instructions per cycle) using

Tomasulo's algorithm to perform the dynamic scheduling of instructions. The program performs a search within a

vector. Initially, R1 = 0.

etic: LW R2, 0(R1) ; read Xi

 ADDI R2, R2, 3 ; add 3 to Xi

 SW R2, 0(R1) ; write Xi

 ADDI R1, R1, 4 ; update R1

 BNE R2, R0, etic ; continue to loop if false

Working hypothesis:
• the loop executes speculatively in terms of direction (always taken) and regarding the branch condition;

 high-performance fetch breaks after fetching a branch

• the issue stage (I) calculates the address of the actual reads and writes; only 1 instruction is issued per cycle

• reads require 5 clock cycles; writes take 0 cycles (they are written in a write-buffer + split-cache)

• when accessing memory (M), writes have precedence over reads and must be executed in-order
• there's only one CDB

• dispatch stage (P) and complete stage (W) require 1 clock cycle

• ASSUME that the reservation stations could be freed right after the issue phase
• only 1 instruction is committed (C stage) per cycle

• there are separated integer units: one for the calculation of the actual address, one for arithmetic and logical operations

 and one for the evaluation of the branch condition, as illustrated in this table:

• the functional units do not take advantage of pipelining techniques internally

• the load queue has 3 slots; the store queue has 3 slots (writes wait for the operand in the store queue, i.e., in the execution stage)
• the rest of the processor and has the following characteristics

Complete the following chart until the end of the FOURTH iteration of the code fragment above in the case of dynamic

scheduling with speculation. Also add the instruction that is occupying a certain reservation station (one of the 6)

besides each dispatch cycle (start):

2) (5/40) Explain what is (i) an anti-dependency and (ii) an output-dependency and give an assembly example for each one

of the two cases in the code of the question (1).

Type of Functional Unit No. of Functional

Units

Cycles for stage X No. of reservation stations

Integer (effective addr.) 1 1 2

Integer (op. A-L) 1 1 2
Integer (branch calc.) 1 1 2

Iter. Instruction ALU

RS1

ALU

RS2

EAC

RS1

EAC

RS2

B

RS1

B

RS2

P:

Dispatch

(start-stop)

I+X:

Issue+Exec

(clock)

M: MEM

ACCESS

(start-stop)

W:

CDB-write

(clock)

C:

Commit

(clock)

Comments

1 LW R2,0(R1) I01 1-1 2 3-7 8 9

… …

… …

HIGH PERFORMANCE COMPUTER ARCHITECTURE midterm exam 31-10-2017 – SOLUTION

(REVISED 23/10/2023)

1)

Count Instruction
ALU

RS1

ALU

RS2

EAC

RS1

EAC

RS2

B

RS1

B

RS2

P: Dispatch

(start-stop)

I+X:

Issue+Exec

(clock)

M: MEM

(start-stop)

W:

CDB-write

(clock)

C:

Commit

(clock)

 Comments

01 LW R2,0(R1)
I01

1-1 1-1 2 3-7 8 9

02 ADDI R2,R2,1
I02

1-8 1-8 9 -- 10 11 I waits R2 from 1/LW

03 SW R2,0(R1)
I03

1-2 1-2 3 13 -- 14
I waits issue logic; M waits R2 M waits mem (store alredy

in queue and must be executed in order)

04 ADDI R1,R1,4
I04

2-3 2-3 4 -- 5 15 I waits issue logic;

05 BNE R2,R0,etic
I05

2-10 2-10 11 -- -- 16 I waits R2 from 1/ADDI-R2

06 LW R2,0(R1)
I06

3-5 3-5 6 8-12 13 17 I waits R1; M waits mem

07 ADDI R2,R2,1
I07

4-13 4-13 14 -- 15 18 P waits A-RSs; I waits R2 from 2/LW;

08 SW R2,0(R1)
I08

4-6 4-6 7 19 -- 20 I waits R1; I waits issue logic; M waits R2; M waits mem

09 ADDI R1,R1,4
I09

9-9 9-9 10 -- 11 21 P waits A-RSs;

10 BNE R2,R0,etic
I10

9-15 9-15 16 -- -- 22 I waits R2 from 2/ADDI-R2;

11 LW R2,0(R1)
I11

10-11 10-11 12 14-18 19 23 I waits issue logic; I waits R1; M waits mem

12 ADDI R2,R2,1
I12

10-19 10-19 20 -- 21 24 P waits A-RSs; I waits R2 from 3/LW

13 SW R2,0(R1)
I13

10-12 10-12 13 25 -- 26 I waits R1; I waits issue logic; M waits R2; M waits mem

14 ADDI R1,R1,4
I14

14-14 14-14 15 -- 16 27 P waits A-RSs;

15 BNE R2,R0,etic
I15

14-21 14-21 22 -- -- 28 I waits R2 from 3/ADDI-R2

16 LW R2,0(R1)
I16

15-16 15-15 17 20-24 25 29 I waits R1; M waits mem;

17 ADDI R2,R2,1
I17

15-25 15-25 26 -- 27 30 P waits A-RSs; I waits R2 from 4/LW

18 SW R2,0(R1)
I18

15-17 15-17 18 28 -- 31 I waits R1; I waits issue logic; M waits R2; M waits mem;

19 ADDI R1,R1,4
I19

20-20 20-20 21 -- 22 32 P waits A-RSs

20 BNE R2,R0,etic
I20

20-27 20-27 28 -- 33 I waits R2 from 4/ADDI-R2

2) Given two subsequent instructions I and J:

• Antidependency: I reads a register that is written by J

• Output-dependency: both I and J write in the same register

In the case of our code:

• Antidependency:
I05: bne R2, R0, etic

I06: lw R2, 0(R1)

I05: bne R2, R0, etic

I07: addi R2, R2, 1

• Output-dependency:
I01: lw R2, 0(R1)

I02: addi R2, R2, 1

I04: addi R1, R1, 4

I09: addi R1, R1, 4

I02: addi R2, R2, 1

I07: addi R2, R2, 1

