
HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 19-12-2017 MATR.NO.__________________

(REVISION 1.1) SURNAME__________________

 FIRST NAME__________________

1) (POINTS 25/40) Consider a four-processor bus-based multiprocessor using the MESI protocol. Each processor executes
a TAS instruction to lock and gain access to an empty critical section. The initial condition is such that processor 1 has
the lock and processor 2, 3, and 4 are spinning on their caches waiting for the lock to be released. Every processor gets
the lock once and exits the program. These are the implementations of the lock and unlock:

Lock: lw R1, mylock # R1 = &mylock
 bne R1, R0, Lock # if (R1 != 0) jump to Lock
 TAS R1, mylock # atomically_do {R1 = &mylock; mylock = 1;}
 bne R1, R0, Lock # if (R1 != 0) jump to Lock
 ret

 Unlock: sw 0, mylock # write 0 into &mylock
 ret

Note1: the semantic of the TAS (Test And Set) instruction is the following: atomically reads the specified memory location (mylock) and writes a one
into that memory location (mylock). Note2: this implementation of the Lock tries to minimize the probability to have the bus locked by the TAS (this
implementation is also known as Test-and-Test-and-Set). Note3: the lock is closed when mylock==1 and it is open when mylock==0.

By using the following tables, show the operations and bus transactions (or comments): A) in the best case (least
number of transactions) and B) in the worst case (highest number of transactions)

A) Best case:

B) Worst case:

2) (POINTS 15/40) Write a CUDA program that reads a color array (int color[1024]) and writes an array “int histogram[256]”
that contains the frequency of each of 256 possible colors (the 256 values are the values that each element of color[] can
assume). The program should be written in a way that it exploits Thread Level Parallelism as offered by CUDA (a serial or
serialized version has to be avoided). Hint: try to perform operations in a hierarchical way and use CUDA shared memory.

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S S S S Initially, P1 holds the lock
1 sw1 M I I I BusUpgr – P1 releases the lock

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S S S S Initially, P1 holds the lock
1 sw1 M I I I BusUpgr – P1 releases the lock

HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 19-12-2017
(solution trace)

1) Remembering the state diagram for the MESI protocol:

I

S

M

PrRd
PrWr/-

PrWr/BusRdX

PrWr/BusUpgr

BusRd/Flush

PrRd/-
BusRd/-

BusRdX/FlushX

BusRdX
BusUpgr/-

E

PrWr/-

BusRdPrRd/-

PrRd/BusRd(LS’)

PrRd/BusRd(LS)

BusRdX /Flush*

/Flush*

/Flush*

1A) The best case happens if the interleaving of the operations is such that each processor attempts and get access to the
critical section one after the other.

1B) The worst case happens if the interleaving of the operations is such that each processor attempts simultaneously the
“lw” to read the status of mylock and then simultaneously try to get the access through the TAS instruction.

* Depending on the implementation a BusRdX could be directly associated to the (atomic) TAS instruction.

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S S S S Initially, P1 holds the lock
1 sw1 M I I I BusUpgr – P1 releases the lock
2 lw2 S S I I BusRd(Ls)/Flush –P2 reads the lock
3 TAS2 I M I I BusUpgr – P2 tries to lock and succeeds
-- sw2 I M I I P2 releases the lock
4 lw3 I S S I BusRd(Ls)/Flush –P3 reads the lock
5 TAS3 I I M I BusUpgr – P3 tries to lock and succeeds
-- sw3 I I M I P3 releases the lock
6 lw4 I I S S BusRd(Ls)/Flush –P4 reads the lock
7 TAS4 I I I M BusUpgr – P4 tries to lock and succeeds
-- sw4 I I I M P4 releases the lock

Bus Trans.
Number

Processor
Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S S S S Initially, P1 holds the lock
1 sw1 M I I I BusUpgr -- P1 releases the lock
2 lw2 S S I I BusRd(Ls)/Flush – P2 reads the lock
3 lw3 S S S I BusRd(Ls)/Flush – P3 reads the lock
4 lw4 S S S S BusRd(Ls)/Flush – P4 reads the lock
5 TAS2 I M I I BusUpgr – P2 gets the lock
6 TAS3 I I M I BusRd(Ls’)(I to E)/Flush/--(E to M) [or BusRdX/Flush*] no lock
7 TAS4 I I I M BusRd(Ls’)(I to E)/Flush/--(E to M) [or BusRdX/Flush*] no lock
8 st2 I M I I BusRdX -- P2 releases the lock
9 lw3 I S S I BusRd(Ls)/Flush – P3 reads the lock
10 lw4 I S S S BusRd(Ls)/Flush – P4 reads the lock
11 TAS3 I I M I BusUpgr – P3 gets the lock
12 TAS4 I I I M BusRd(Ls’)(I to E)/Flush/--(E to M) [or BusRdX/Flush*] no lock
13 sw3 I I M I BusRdX -- P3 releases the lock
14 lw4 I I S S BusRd(Ls)/Flush – P4 reads the lock
15 TAS4 I I I M BusUpgr – P4 gets the lock
--- sw4 I I I M P4 releases the lock

HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 19-12-2017
(solution trace)

2) This is the CUDA code for a possible implementation of the requested kernel (tested on Tesla C1060 with
Compute Capability 1.3 and CUDA 4.1):

#include <stdio.h>
#include <cuda_runtime.h
#include <cutil_inline.h>
#include <device_functions.h>
#include <sm_11_atomic_functions.h>

typedef unsigned char uchar;
typedef unsigned int uint;
#define HISTOGRAM_BIN_COUNT 256
#define N 1024
__global__ void histogram3(uint* histogram, uchar* color, int size)
{
 __shared__ uint data[HISTOGRAM_BIN_COUNT];

 // I ni t i a l i z a t i o n
 int stride = blockDim.x;
 for (int i = threadIdx.x; i < HISTOGRAM_BIN_COUNT; i += stride)
 data[i] = 0;
 __syncthreads();

 // C a l c u l a t e p r i v a t e h i s t o g r a m
 stride = blockDim.x * gridDim.x;
 for (uint i = threadIdx.x + blockDim.x * blockIdx.x;
 i < size; i += stride)
 atomicAdd(&data[color[i]], 1);
 __syncthreads();

 // U p d a t e g l o b a l h i s t o g r a m
 stride = blockDim.x;
 for (uint i = threadIdx.x; i < HISTOGRAM_BIN_COUNT; i += stride)
 atomicAdd(&(histogram[i]), data[i]);
}

int main() {
 uchar* hColor = (uchar*)malloc(N * sizeof(uchar));
 uint* hHistogram3 = (uint*)malloc(HISTOGRAM_BIN_COUNT * sizeof(uint));
 dim3 block, grid;
 uchar* dColor;
 uint* dHistogram;
 cudaMalloc(&dHistogram, HISTOGRAM_BIN_COUNT * sizeof(uint));
 cudaMalloc(&dColor, N * sizeof(uchar));
 srand(2017);
 for (uint i = 0; i < N; ++i) hColor[i] = (uchar)(rand() % 256);
 cudaMemcpy(dColor, hColor, N * sizeof(uchar), cudaMemcpyHostToDevice);
 cudaMemset(dHistogram, 0, HISTOGRAM_BIN_COUNT * sizeof(uint));
 block.x = 512;
 grid.x = (N + block.x - 1) / block.x;
 histogram3<<<grid,block>>>(dHistogram, dColor, N);
 cudaMemcpy(hHistogram3, dHistogram,
 HISTOGRAM_BIN_COUNT * sizeof(uint), cudaMemcpyDeviceToHost);
 for (int i = 0; i < HISTOGRAM_BIN_COUNT; ++i)
 printf("%d ", hHistogram3[i]); printf("\n");
}

Makefile:
EXECUTABLE := histo256
CUFILES_sm_13 := histo256.cu
GENCODE_ARCH := -gencode=arch=compute_13,code=\"sm_13,compute_13\"
 -gencode=arch=compute_20,code=\"sm_20,compute_20\"
include ../../common/common.mk

