
HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 23-12-2020 MATR.NO.__________________

 SURNAME__________________

 FIRST NAME__________________

1) (POINTS 25/40) 1) Let’s consider a shared-bus shared-memory coherence protocol with the following characteristics:

- Processor Operations: Read (PrRd) and Write (PrWr).

- Bus Transactions: Read a data-block from Memory (BusRd), Propagate a PrWr on the bus (BusUpd – a single data-word goes to other caches and to

memory), Write back a block onto the bus (Flush – the data block goes to memory).

- There are 4 states: 1) the copy is not valid (I – Invalid); 2) the copy is in one cache only and we assume that it has been modified even if it has been

just loaded (D – Dirty); 3) the copy has been just loaded in the current cache and other copies exist in other caches (S0 – shared and no other processor

has updated it after loading the copy); 4) the copy is shared but some other processor had issued a write into that block (S1 – shared and other

processors issued exactly one update to that block).

- The bus has a shared line, which is activated by remote snoopers in response to a bus transaction to indicate whether (S) or not (S’) other copies of the

addressed block exist in other caches.

Assume that this protocol is used in a four-processor system, where each processor executes a TAS instruction to lock and gain access to an empty

critical section. The initial condition is such that processor 1 has the lock and processor 2, 3, and 4 are spinning on their caches waiting for the lock to be

released. Every processor gets the lock once and exits the program. These are the implementations of the lock and unlock:
Lock: lw R1, mylock # R1 = &mylock

 bne R1, R0, Lock # if (R1 != 0) jump to Lock

 TAS R1, mylock # atomically_do {R1 = &mylock; mylock = 1;}

 bne R1, R0, Lock # if (R1 != 0) jump to Lock

 ret

 Unlock: sw 0, mylock # write 0 into &mylock

 ret

Note1: the semantic of the TAS (Test And Set) instruction is the following: atomically reads the specified memory location (mylock) and writes a one into that memory location (mylock). Note2: this

implementation of the Lock tries to minimize the probability to have the bus locked by the TAS (this implementation is also known as Test-and-Test-and-Set). Note3: the lock is closed when

mylock==1 and it is open when mylock==0. Also assume that NO write is propagated on the bus if the TAS finds a closed lock (i.e., if the TAS fails).

By using the following tables, show the operations and bus transactions (or comments) in the best case (least number of transactions) and in the worst

case (highest number of transactions)

Case A:

Case B:

2) (POIN

2) (POINTS 15/40) Write an MPI function that reads a color array (int color[1024]) and writes an array “int histogram[256]” that contains the

frequency of each of 256 possible colors (the 256 values are the value that each element of color[] can assume). A serial or serialized version has to be

avoided. The program should be written in a way that it exploits parallelism as offered by MPI. Reference scalar version:

unsigned char Color[1024]; int Histogram[256];

void histo_scalar(int *histogram, unsigned char *color, int size, int wid, int nw) {

 for(int i=0; i<size; i++) histogram[color[i]] += 1;

}

Hints: use send and receive to distribute the work among the available workers/nodes; use MPI primitives: MPI_Send, MPI_Recv, MPI_Iprobe.

Bus Trans.

Number

Processor

Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S0 S0 S0 S0 Initially, P1 holds the lock

1 sw1 S0 S1 S1 S1 BusUpd – P1 releases the lock

Bus Trans.

Number

Processor

Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S0 S0 S0 S0 Initially, P1 holds the lock

1 sw1 S0 S1 S1 S1 BusUpd – P1 releases the lock

HIGH PERFORMANCE COMPUTER ARCHITECTURE final exam 23-12-2020

(solution trace) REV.231123

1) The state diagram for this protocol:

I S0 S1

D

BusUpd/-

BusRd/- PrWr/BusUpd(S)

BusRd/-

PrRd/-

PrRd/-
PrWr/-

BusRd/-

BusRd/Flush

PrRd/-
PrWr/BusUpd(S)

PrWr/BusUpd(S’)

PrRd/BusRd(S’)

PrWr/BusRd(S’)

PrWr/BusUpd(S’)

BusUpd/-

PrRd/BusRd(S)

PrWr/(BusRd(S); BusUpd) BusUpd/-

The BEST case happens if the interleaving of the operations is such that each processor attempts and get access to the critical section one after the other.

The WORST case happens if the interleaving of the operations is such that each processor attempts simultaneously the “lw” to read the status of mylock and then
simultaneously try to get the access through the TAS instruction. In this cache each processor has cached the lock and if the TAS fails no bus transaction is issued

2) This is the MPI code for a possible implementation of the requested function:

#define MASTER 0

#define TAG_GENERAL 1

void histo_mpi(int *histogram, char *color, int size, int wid, int nw) {

 int i, histogram_private[256];

 for(i=0; i<256; i++) histogram_private[i] = 0;

 MPI_Status Stat;

 int ssize = (size - 1) /nw + 1;

 char *slice = malloc(ssize * sizeof(char));

 if (wid == MASTER) { // Distribute the work

 for (int i= 0; i<ssize; ++i) slice[i] = color[i]; // Assign 1st slice to master

 for(int w=1; w<nw; ++w) // Send the other slices to the slaves

 MPI_Send(color + w*ssize, ssize, MPI_CHAR, w, TAG_GENERAL, MPI_COMM_WORLD);

 } else { // slave

 int dataWaitingFlag; // Wait until a message is there to be received

 do MPI_Iprobe(MASTER, TAG_GENERAL, MPI_COMM_WORLD,

 &dataWaitingFlag, MPI_STATUS_IGNORE);

 while (!dataWaitingFlag);

 MPI_Recv(slice, ssize, MPI_CHAR, MASTER, TAG_GENERAL, MPI_COMM_WORLD, &Stat);

 }

 // Processing data

 for (int i= 0; i<ssize; ++i) histogram_private[slice[i]]++; free(slice);

 if (wid == MASTER) { // Process the partial results

 int w, done = 0;

 // Accumulate the result

 for (int i= 0; i<256; ++i) histogram[i] += histogram_private[i];

 do {// Get partial histograms from slaves

 for (w=1; w<nw; ++w) { // round robin check

 int dataWaitingFlag;

 MPI_Iprobe(w, TAG_GENERAL, MPI_COMM_WORLD,

 &dataWaitingFlag, MPI_STATUS_IGNORE);

 if (dataWaitingFlag) { // Get the message

 MPI_Recv(histogram_private, 256, MPI_INT, w,

 TAG_GENERAL, MPI_COMM_WORLD, &Stat);

 ++done;

 // Accumulate the result

 for (int i= 0; i<256; ++i) histogram[i] += histogram_private[i];

 }

 }

 } while (done < nw - 1);

 } else // slave: send back the partial result

 MPI_Send(histogram_private, 256, MPI_INT, MASTER, TAG_GENERAL, MPI_COMM_WORLD);

}

Alternatively, by using Scatter/Reduce:

void histo_mpi(int *histogram, char *color, int size, int wid, int nw) {

 int rc, i, histogram_private[HISTOGRAM_BIN_COUNT];

 for(i=0; i<HISTOGRAM_BIN_COUNT; i++) histogram_private[i] = 0;

 int ssize = (size - 1) /nw + 1;

 char *slice = malloc(ssize * sizeof(char));

 MPI_Scatter(color, size, MPI_CHAR, slice, ssize, MPI_CHAR, 0, MPI_COMM_WORLD);

 // Processing data

 for (int i= 0; i<ssize; ++i) histogram_private[slice[i]]++; free(slice);

 for(int i=0; i<HISTOGRAM_BIN_COUNT; i++)

 MPI_Reduce(&histogram_private[i],

 &histogram[i], 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

}

Bus Trans.

Number

Processor

Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S0 S0 S0 S0 Initially, P1 holds the lock

1 sw1 S0 S1 S1 S1 BusUpd1 – P1 releases the lock

--- lw2 S0 S0 S1 S1 P2 reads the lock (and it finds it open, i.e. ==0)

2 TAS2 S1 S0 I I BusUpd2 – P2 tries to lock and succeeds

3 sw2 I D I I BusUpd2 – P2 releases the lock

4 lw3 I S0 S0 I BusRd3+Flush2 –P3 reads the lock (and it finds it open, i.e. ==0)

5 TAS3 I S1 S0 I BusUpd3 – P3 tries to lock and succeeds

6 sw3 I I D I BusUpd3 – P3 releases the lock

7 lw4 I I S0 S0 BusRd4+Flush3 –P4 reads the lock (and it finds it open, i.e. ==0)

8 TAS4 I I S1 S0 BusUpd4 – P4 tries to lock and succeeds

9 sw4 I I I D BusUpd4 – P4 releases the lock

Bus Trans.

Number

Processor

Operation

P1 P2 P3 P4 Bus Transactions/Comments

--- (Init.state) S0 S0 S0 S0 Initially, P1 holds the lock

1 sw1 S0 S1 S1 S1 BusUpd1 -- P1 releases the lock

--- lw2 S0 S0 S1 S1 P2 reads the lock → reads 0 → the first bne doesn’t branch

--- lw3 S0 S0 S0 S1 P3 reads the lock → reads 0 → the first bne doesn’t branch

--- lw4 S0 S0 S0 S0 P4 reads the lock → reads 0 → the first bne doesn’t branch

2 TAS2 S1 S0 S1 S1 BusUpd2 – P2 gets the lock and updates the others

3 TAS3 I S1 S0 I TAS fails: no lock → BusUpd3

4,5 TAS4 I I S1 S0 BusRd4 - TAS fails: no lock → BusUpd4

6,7 sw2 I S0 I S1 BusRd2+BusUpd2 -- P2 releases the lock

9 lw3 I S0 S0 S1 BusRd3 - P3 reads the lock

--- lw4 I S0 S0 S0 P4 reads the lock

10 TAS3 I S1 S0 S1 BusUpd3 – P3 gets the lock and updates the others

--- TAS4 I I S1 S0 TAS fails: no lock

11 sw3 I I S0 S1 BusUpd3 -- P3 releases the lock

--- lw4 I I S0 S0 P4 reads the lock

12 TAS4 I I S1 S0 BusUpd4 – P4 gets the lock and updates the others

13 sw4 I I I D BusUpd4 – P4 releases the lock

